École thématique CNRS :

Transformations de phase avec diffusion dans les solides Porquerolles (Var) du 18 au 24 mai 2008

Microscopies Électroniques et Transformations de phases avec diffusion dans les solides

Thierry EPICIER

MATEIS, umr CNRS 5510, INSA de Lyon, 69621 Villeurbanne Cedex

INTRODUCTION

- **1 phases** (forme/taille/répartition/O.R.s, cristallo-chimie)
- **2** interface (structure atomique, ségrégations, gradients chimiques,...)
- **3** hétérogénéités de microstructure (précipitation, contraintes,...)
- **4** défauts cristallins (dislocations, fautes d'empilement, antiphases,...)

Microstructures en microscopie optique, électronique à balayage et électronique en transmission (film 'ACIER', Le Relief de l'Invisible, 2000)

Microscopies Electroniques et Transitions de Phases - T. Epicier

- **2** interfaces (structure atomique, ségrégations, gradients chimiques,...)
- 3 hétérogénéités de microstructure (précipitation, contraintes,...
- 4 défauts cristallins (dislocations, fautes d'empilement / d'ordre,...)

PLAN du cours

. Microscopies Électroniques à Balayage I.1. MEB

- I.1.1. Imageries
- I.1.2. Analyse chimique (EDX) et cartographies
- I.1.3. Analyse cristallographique EBSD
- I.1.4. MEB environnemental et in situ

I.2. FIB

- I.2.1. Principe
- I.2.2. Applications de nano-usinage (MET)
- **I.2.3.** Autres Applications (canalisation, tomographie)

I. Microscopie Électronique en Transmission

II.1. Imageries

- II.1.1. Imagerie en MET Conventionnelle
- II.1.2. Haute Résolution
- **II.1.3.** Diffraction Électronique
- II.1.4. Imageries par cartographie chimique (EDX EFTEM)
- II.1.5. Imagerie STEM (HAADF)
- **II.2.** Analyses spectroscopiques
 - II.2.1. Analyse chimique EDX
 - II.2.2. Spectroscopie EELS
- **II.3.** Aspects spécifiques
 - II.3.1. MET in situ
 - II.3.2. Tomographie en MET
 - II.3.3. Microscopie corrigée en C_s

III. Annexes

I. Microscopies Électroniques à Balayage

[L. REIMER, 'Scanning Electron Microscopy physics of image formation and microanalysis', Springer series in optical sci. 45, Springer-Berlin, (1985)]

[J.I. GOLDSTEIN et al., 'Scanning Electron Microscopy and X-Ray Microanalysis', 3nd Ed., Springer Verlag, (2003), 689 p.]

Approches possibles en MEB à émission de champ (Field-Emission Gun) résolution 'nanométrique'

I. Microscopies Électroniques à Balayage......I.1. MEB.....I.1. Imageries

I.1.1.a) Modes d'imagerie

I.1.1.b) Échantillons sensibles et/ou peu conducteurs

Membrane polymère nanoporeuse

Métallisation (C)

Haut vide, faible tension 5.0 kV

IMAGERIE "low-voltage"*

Haut vide, basse tension 600 V

5 µ

IMAGERIE "low-vacuum"

25 kV, pression partielle 0.8 Torr

[micrographies **Récamia** / **CLYM**, Lyon] http://recamia.rhone-alpes.cnrs.fr/

CÉRAMIQUE (nitrure de silicium Si₃N₄)

Gaz N₂ (5 Torr)

I. Microscopies Électroniques à Balayage...I.1. MEB...I.1.2. Analyse chimique (EDX) et cartographies

I.1.2.a) Analyse chimique EDX (Energy-Dispersive X-ray spectroscopy)

• principe physique

$\frac{[A]}{[B]} = K_{A,B} \frac{I_A A_B}{I_B A_A}$

atome (

électrons

incidents

émission X

- . K_{A,B} : coefficient de Cliff-Lorimer (calculé / mesuré)
- . I_{X (X=A,B)}: intensité du pic (corrigée du fond)
- . $A_{X (X=A,B)}$: facteur d'absorption (lié à l'épaisseur)

[G. CLIFF, G.W. LORIMER, *J. of Microscopy* 103, 2, (1975), 203-207] [D.B. WILLIAMS, C.B. CARTER, 'Transmission Electron Microscopy -IV : Spectrometry', Plenum Press : New York, (1996)]

technologie de la détection

Analogique – Numérique (montage multi-canal)

- Détecteurs sans azote liquide (~2000)

SDD (Silicon Drift Detector)

- . > 100 fois plus rapide
- . Résolution 125 eV à 100 kcps/s
- sonde 2 nA : ≈ 100 kcps/s (témoin Cu) avec un détecteur de 30mm²

I.1.2.b) CARTOGRAPHIE chimique

◆ Illustration 1 (minéralogie) : exsolution riche en Ca (pyroxène Mg_{11.5}Fe_{5.6}Ca_{1.6}Si_{20.7}O_{60.4})

[B. VAN de MOORTELE, ENS-Lyon, non publié]

10/125

SYNERGIE⁴

• *Illustration 2 :* cartographie ultra-rapide

I. Microscopies Électroniques à Balayage.....I.1. MEB....I.1.3. Analyse cristallographique EBSD

I.1.3.a) Principe de l'EBSD (Electron BackScatter Diffraction)

[S. ZAEFFERER, *Ultramicrosc.* 107 (2007), 254-266]

Indexation

Fe₂Nb (Laves)

Hexagonal P63/mmc (n°194) a = 0.4830 nm,c = 0.7882 nm

12/125

I.1.3.b) Illustrations

◆ solidification directionnelle d'un alliage base Ni [P.H. JOUNEAU, MATEIS (2006)]

- . Résolution spatiale
- . Résolution angulaire
- Vitesse
- . Surface

- 1 μm 50 nm (FEG)
- ~ 0.5 ° en relatif (2° en absolu)
- **1 à 400 pixels/s** (512x512 pixels² < 1/4 h) OXFORD
- jusqu'à qqs. cm²

variants d'orientation

Principe

I. Microscopies Électroniques à Balayage.....I.1. MEB....I.1.4. MEB environnemental et in situ

I.1.4.a) MEB environnemental à pression contrôlée

[G.D. DANILATOS, V.N.E. ROBINSON, *Scanning 2* (1979), p.72-82, http://www.danilatos.com/] [A. BOGNER et al., *Micron* 38, 4, (2007), 390-401]

. matière organique

. systèmes hydratés (solutions liquides,...)

. objets isolants

. in situ (température)

15/125

I.1.4.b) observations in situ

. oxydation $UO_2 \rightarrow U_3O_8$ à 650°C

50 µm

[G.THOLLET MATEIS, L. DESGRANGES CEA-Cadarache]

. recristallisation du Cuivre à 300°C

50 μm

[F.J. HUMPHREYS Manchester Mater. Sci. Centre UK]

1.2. FIB (Focussed Ion Beam)

I. Microscopies Électroniques à Balayage......I.2. FIB.....I.2.1. Principe

microscope 'double-colonne' électronique / ionique (ions Ga+)

17/125

I. Microscopies Électroniques à Balayage......I.2. FIB.....I.2.2. Applications de nano-usinage

I.2.2.a) principe (lift-out, H-bar...)

déposition (soudage) sur grille de MET

AVANTAGES :

- . préparation automatisée
- . épaisseur uniforme \approx 40-100 nm (sur \approx 5 x 15 μ m²)
- . LOCALISATION

INCONVÉNIENTS :

- . dégradation superficielle
- (implantation Ga, amorphisation)

[J. LI et al., Materials Characterization 57, (2006), 64-70]

I.2.2.b) illustration : préparation MET localisée

-Mateis

I.2.2.c) Remarques : autres préparations MET

• Méthodes usuelles (polissage électrolytique, tripod, bombardement ionique)

[J. AYACHE et al., 'Guide de préparation des échantillons pour la microscopie électronique en transmission', Tomes I & II, Pub. de l'Université de Saint-Etienne, (2007), http://temsamprep.in2p3.fr/]

• Répliques extractives (précipitation)

matrice contenant des (nano-) précipités (surface polie) ; 2) attaque chimique superficielle sélective de la matrice ;
dépôt d'un film mince (C, AlO_x,...) ; 4) 'arrachage' du film ; 5) dépôt de la préparation sur une grille de microscopie 19/125

I. Microscopies Électroniques à Balayage......I.2. FIB.....I.2.3. Autres applications

Image électronique

I.2.3.a) Contraste 'de canalisation'

Origine physique

Image électronique induite par le faisceau d'IONS

• Illustration [D. BULTREYS (2005)]

• FE image MEB (BSE) image ionique suface traitée d'un micro-réacteur catalytique Image MEB (BSE) Image ionique b b Image MEB (BSE) Image ionique b b Image MEB (BSE) Image ionique b b Image MEB (BSE) Image ionique b Image MEB (BSE) Image ionique Image ionique b Image ionique Image ionique <td

'Slice & View'

I. Microscopies Électroniques à Balayage......I.2. FIB.....I.2.3. Autres applications

d'après [B.J. INKSON et al., Scripta Materialia 45, (2001), 753-758]

I.2.3.c) Remarque : Tomographie 'MEB' en mode STEM

brevet FR06-09-708 [P. JORNSANOH, G. THOLLET, K. MASENELLI-VARLOT, C. GAUTHIER, J. FERREIRA, MATEIS-Lyon]

Porte-échantillon tournant (360°) avec réglage de l'eucentricité

→ Reconstruction 3D

- 2 étapes principales :
- Recalage des images
- Reconstruction en volume (TomoJ, IMOD, environnement MATLAB)

Série d'images d'un polymère renforcé par des nano-charges minérales après posttraitement (recalage) avec **TomoJ** [http://u759.curie.u-psud.fr/softwaresu759.html]

II. Microscopie Électronique en Transmission

II.1. IMAGERIES

[D.B. WILLIAMS and C.B. CARTER, 'Transmission Electron Microscopy, a text book for materials science', Plenum Press : New York, (1996), 4 volumes]

['Ecole thématique: Microscopie des Défauts Cristallins', St Pierre d'Oléron, éd. Soc. Française des Microscopies, (2001)]

[L. REIMER, '*Transmission Electron Microscopy*', Springer Verlag : Berlin, 3° ed., (1993), 545 p.]

MET Conventionnelle

MET Haute Résolution

STEM - HAADF

Techniques de Diffraction

Cartographie Chimique

Approches possibles en MET à émission de champ (Field-Emission Gun)

II. Microscopie Électronique en Transmission....II.1. Imageries...II.1.1. Imagerie en METC

II.1.1.a) Champ clair – champ sombre

CHAMP CLAIR (faisceau TRANSMIS) (Al₂O₃, début de frittage - 2 h. à 1500°C)

CHAMP SOMBRE (faisceau DIFFRACTÉ)

-Mateis

II.1.1.b) MET Conventionnelle et structures ordonnées

['Ordre-Désordre dans les Matériaux', École CNRS Aussois, Éd. de Physique, (1984), 396 p.]

the

[Y. Le BOUAR et al., Phys. Rev. B 61, 5, (2000), 3317-3326]

• faute d'ordre créée par les dislocations

[P. CASTANY, thèse (2007)]

II.1.1.c) Précipitation

Imagerie aisée de(s) VARIANT(s) en CHAMP SOMBRE SI RELATION D'ORIENTATION

Précipitation homogène de Si dans Al Relation d'orientation 'CUBE-CUBE'

111

111

Précipitation homogène de δ-Ni₂Si (orthorhombique) dans Cu Relation d'orientation $(001)_{Cu} // (001)_{\delta}$, $[110]_{Cu} // [010]_{\delta}$

[T. EPICIER, Z. SUN, MATEIS (2007)]

◆ Précipitation HÉTÉROGÈNE - HOMOGÈNE

Acier modèle Arcelor Mittal Fe - Nb 790 wt. ppm, C 120 ppm, N 10 ppm (800°C, 30')

Précipitation hétérogène de NbC (c.f.c.) dans α-Fe relation d'orientation 'BAKER-NUTTING'

[E. COURTOIS, T. EPICIER, MATEIS (2007)]

 $\begin{array}{l} \textbf{Précipitation} \text{ homogène } \textbf{de NbN} \text{ et hétérogène } \textbf{de NbC}_xN_y \\ (c.f.c.) \ \textbf{dans } \alpha \textbf{-Fe} \\ \textit{relation d'orientation 'BAKER-NUTTING'} \end{array}$

[T. EPICIER, Adv. Eng. Mater. 8, 12, (2007), 1197-1201]

◆ PFZs (Precipitates Free Zones) aux joints de grains

Ni₂Si dans Cu (650°C, 1h.)

Déplétion de soluté

Si, Ge dans Al (190°C, 3h.)

Eng. A412, (2005), 204-213]

Distance from GB [nm]

-Mateis

• État de cohérence

Précipités cohérents

• Contraste de déformation de *petits précipités* en METC

Lobes de déformation type Ashby-Brown [M.F. ASHBY, L.M. BROWN, *Phil. Mag.*, 8, (1963), 1649-1676]

Acier bas carbone (calmé Al, re-nitruré) 16' à 700 °C

[M. SENNOUR, thèse INSA-Lyon, (2002)]

Précipités sphériques Al₃ZrSc (L1₂) dans Al recuit à 400°C

Simulation indicative "deforMET" [© L. LAE, P. DONNADIEU, SIMAP Grenoble]

Disque VN dans α-Fe (simulations)

[T.C. BOR et al., *Phil. Mag.* A 82, 5, (2002), 971-1001]

31/125

Durcissement structural

[Dislocations et Déformation Plastique, (Yravals 1979), Éd. de Physique, (1980), 461 p.] [P. GUYOT, p. 663-681 dans 'Solid State Phase Transformations in Metals & Alloys', (Aussois 1978), Éd. de Physique, (1980)]

Cisaillement des précipités (si non dissous) 0 **METHR** (résidus de dislocations) 0 0 0 0 0 0 ☐ Contournement des précipités 0 0 (Orowan) 0 boucles de dislocations 0 [www.cemes.fr/Personnel/douin/Simulations.html]

super-alliage γ / γ ' déformé [S. RAUJOL et al., CEMES]

II.1.1.d) Joints de grains - Interfaces

[A.P. SUTTON, R.W. BALLUFFI, 'Interfaces in Crystalline Materials', Clarendon Press : Oxford, (1996)] [L. PRIESTER, 'Les Joints de Grains : de la théorie à l'ingénierie', E.D.P. Sciences, (2006), 484 p.]

Joint de grains dans un acier [C. ESNOUF MATEIS Lyon]

Réseau de dislocations à l'interface NiO-Pt accommodant une désorientation de quelques ° [F.S. SHIEU, S.L. SASS, *Acta Metall Mater* 38, (1990), 1653-1667]

Principe de l'observation en Faisceau Faible *(Weak-Beam Dark-Field)*

voir [B. DÉCAMPS, J. DOUIN, p.153-188 dans 'École thématique : Microscopie des Défauts Cristallins', St Pierre d'Oléron, éd. Soc. Française des Microscopies, (2001)]

Analyse quantitative du contraste de dislocations 'de joint'

Joint Σ 3 incohérent facetté (Cu 6 % at. Si) [C.T. FOREWOOD, L.M. CLAREBROUGH, *Phil. Mag.* A 53, 6, (1986), 863-886]

 $OU = \frac{a_{6}[11\overline{2}]_{L} \rightarrow a_{6}[01\overline{1}]_{L} + a_{6}[10\overline{1}]_{L}}{a_{6}[2\overline{1}\overline{1}]_{R} \rightarrow a_{6}[10\overline{1}]_{R} + a_{6}[1\overline{1}\overline{0}]_{R}}$

dissociation de dislocations DSC en partielles (Displacement Shift Complete lattice)

34/125

• Joints de grains dans des matériaux réels (cas des céramiques)

Corrélations structure / chimie des joints de grains / propriétés mécaniques

par exemple [S. LARTIGUE-KORINEK, F. DUPAU, Acta Metal. et Materialia 42, 1, (1994), 293-302]

"statistiques MET"

Crystallographic parameters of grain boundaries	Grain boundary enrichment factor $\Delta C = 2C_{gb}/(C_{g1} + C_{g2})$			
Grains misorientation	Ti	Si	Mg	Ca
£3:60°/[0001]	1.05	1.00	0.82	0.93
£3:60°/[0001]	1.24	1.11	0.57	1.24
general, 73*/[7251]	3.08	6.50	0.31	1.50
PM (0111), 78°/[6513]	3.60	3.33	0.30	1.38
general, 48°/[8537]	1.94	3.35	0.61	1.54
general, 61°/[252054] facets	0.96	1.55	0.10	1.03
3°£13a: 60°/[0110] GB dislocations	2.34	2.20	0.09	1.29
general, 62°/[5411]	1.67	0.76	0.11	0.97
general, 71°/[111106]	1.80	2.46	0.49	2.00
general, 77°/[191543] facets	2.30	4.32	0.40	1.66
£43, 57°/[7072]	1.72	1.02	0.95	1.00
general, 58°/[122103]	3.49	2.45	0.21	2.10
general, 80°/[5411]	6.31	1.21	0.37	2.72
not determined	2.15	3.33	0.8.5	1.86
PM (1014), 83°/[0554]	4.50	1.32	0.49	1.74
E67, PM (1014) 49°/[5054]	4.58	1.68	0.94	1.57
PM(1216), 40°/[1011]	8.22	1.31	1.27	1.64
general, 54°/[7254]	3.84	2.00	0.31	1.90
PM (0112), 64°/[1450]	5.69	1.22	0.85	1.74

[W. SWIATNICKI et al., *Mat. Sci. Forum* 126-128, (1993), 193-196]

• Joints de grains dans des matériaux réels (cas des céramiques)

 \implies Joints hétérophases (illustration : *fluage 1200* °C Al₂O₃ - 0.35 wt. % MgO - 0.16 wt. % K₂O)

Particules intergranulaires *alumine* β ^{""}:

 $K_2O_4MgO15AI_2O_3 \rightarrow 4 \text{ MgAl}_2O_4 + 2\text{K} + O_2 + 11 \text{ Al}_2O_3$ 10K + O₂ + 6Al₂O₃ → 5(K₂O Al₂O₃) + 2Al

(transformation en **spinelle**)

(corrosion α -Al₂O₃ - fissurations)

[A. MAMOUN et al., Mat. Chem. & Phys. 32 (1992), 169-176, A. MAMOUN, T. EPICIER, M. MURAT, non publié]

37/125

II. Microscopie Électronique en Transmission...II.1. Imageries...II.1.2. Imagerie Haute Résolution

II.1.2.a) Imagerie multi-faisceaux

Interférences multi-faisceaux transfert d'information ≈ 0.1 nm

> Cristallographie :

Détection :

Visualisation de nano-hétérogénéités (précipités, 'amas', ségrégations inter-granulaires,...)

Mesures :

Évaluation de déformations (déplacements, relaxations,...) locales (nanométriques)

II.1.2.b) Cristallographie : identification de structures (modèles) atomiques Illustration 1 : précipitation de Si épitaxié dans AI

• METHR de précipités (relations d'orientation)

NISHIYAMA- $\begin{cases} [100]_{cc} \parallel [01-1]_{cfc} \\ (011)_{cc} \parallel (111)_{cfc} \end{cases}$

 $\begin{array}{l} \mathsf{BAKER-} \\ \mathsf{NUTTING} \end{array} \left\{ \begin{array}{l} [001]_{cfc} \, / \! / \, [001]_{Fe} \\ (110)_{cfc} \, / \! / \, (100)_{Fe} \end{array} \right. \end{array}$

[R.G. BAKER, J. NUTTING, Iron and steel institute special report, London, (1959), 1-22]

VC (*cfc, a* \approx 4.17 Å) dans **Fe** (cc, a = 2.866 Å)_{40/125}

(phases précipitées...)

Quelques exemples...

- Chimie du solide : [S. HOVMÖLLER, Ultramicrosc. 41, (1992), 121-135]
- β" Al-Mg-Si dans Al : [C.D. MARIOARA et al., Acta Mater. 49, (2001), 321]

└──〉 'phase-S' Al₂MgCu dans Al-Li-Cu-Mg

Interfaces et dislocations

⇒ CISAILLEMENT DE PRÉCIPITÉS

 $\mathbf{b}_{\text{précipité}} \neq \mathbf{b}_{\text{matrice}}$: dislocations 'résidus'

super-alliage Ni-Co

[L. GUETAZ, J.M. PENISSON, Mat. Sci. Forum 126-128, (1993), 487-490]

-Mateis

\Box DISLOCATIONS de DÉSACCORD ('*MISFIT*') aux INTERFACES interface Nb (111) // (0001) Al₂0₃ : δ ≈ 1.9 %

1) Réseau de dislocations : b_{Nb} = ½ <111> = 0.4 nm (a_{Nb} = 0.33 nm), D = b/δ = 21.3 nm confirmé expérimentalement [A. LEVAY et al., Acta-mater 47, 15, (1999), 4143-4152]

Dislocation d'interface b = \frac{1}{2}[111]

2) Boîte d'atomes "de départ"

ANALYSE QUANTITATIVE de JOINTS DE GRAINS

\Rightarrow LOCALISATION DES COLONNES ATOMIQUES :

- recherche de 'pic' (maximum d'intensité)
- motifs 'témoins' et 'pattern recognizition' (fonctions d'erreur corrélation croisée -)

Exemple : joint de flexion à 90° <110> assymétrique dans un bi-cristal d'aluminium

[S. PACIORNIK et al, Ultramicrosc. 62, (1996), 15]

image expérimentale [001]_{Al} 800 kV, defocus de Scherzer

⇒ JOINTS DE COÏNCIDENCE : TEST DE 'MODÈLES / POTENTIELS ATOMIQUES'*

Joint incohérent Σ3 (macle {112}) dans Al

[J.M. PÉNISSON et al., *Phil. Mag. Letters* 64, 5, (1991), 277-283]

*si astigmatisme 3^{ème} ordre négligeable

lateis

45/125

AI - 6061

Microscopies Electroniques et Transitions de Phases - T. Epicier

AI - 0.9% Cu, 1.4% Mg

II.1.2.c) Détection / Visualisation de nano-hétérogénéités

Amas et zones 'Guinier-Preston'

[A. GUINIER, Ann. Phys. 12, (1938), 161, G. D. PRESTON, Phil. Mag. 26, (1938), 855]

AI - 1.84% Cu

as

[M. KARLIK et al., *Acta Mater.* 46, (1998), 1817-1825]

[A. CHARAÏ et al., *Acta Mater.*, 48, (2000), 2751]

détection AISÉE de plaquettes / disques (amas) de dimensions nanométriques

• En dehors des alliages d'aluminium...

[É. COURTOIS, thèse INSA (2005)]

Mateis

Détection en MET(HR) POSSIBLE mais **STEM-HAADF PLUS PROMETTEUR**...

• Films non-cristallins intergranulaires (cas des céramiques)

[D.R. CLARKE, *J. Am. Ceram. Soc.* 70 (1987), 15-22]

 β -Si₃N₄

[J. DOUIN_et al., *Mat. Chem.* & *Phys.* 32, (1992), 77-85]

[L. GREMILLARD et al., J. Eur. Cer. Soc. 25, (2005), 875-882]

Champs de déformation autour de précipités

ch's

51/125

II. Microscopie Électronique en Transmission.....II.1. Imageries......II.1.3. Diffraction Électronique

II. Microscopie Électronique en Transmission.....II.1. Imageries......II.1.3. Diffraction Électronique faisceau parallèle faisceau convergent II.1.3.a) Principe P(hkl) lentille objectif ligne d'excès ligne de manque plan focal 1 ligne de manque cliché attendu ligne d'excès cliché

expérimental

II.1.3.b) APPLICATIONS

Diffraction CONVENTIONNELLE (Selected Area Diffraction S.A.D.)

• EFFETS de FORME (bis) : précipitation en aiguilles orientées <100> dans Al

Al - 4.2% Cu - 1.5% Mg, 270°C

ch's

intersection des DISQUES diffus (plans {100}) avec la zone [1-21]

55/125

- RELATIONS d'ORIENTATION

EXERCICE : d'après les données de la littérature ci-dessous, identifier la structure des précipités de type β ' observés dans l'alliage d'Al 6061 vieilli 1 h. à 300°C, sachant que l'orientation de la matrice d'aluminium (cfc, a = 0.405 nm) est [001].

In the case of the ternary AI-Mg-Si alloys without excess of Si, previous TEM works [1-3] showed that the precipitation sequence is rather well established and can be described as follows: supersaturated solid solution \rightarrow GP zones \rightarrow needle-shaped precipitates aligned along <100> directions of the matrix and coherent with the matrix along their major axes (β " phase) \rightarrow rod-shaped precipitates semi-coherent with the matrix (β ' phase) \rightarrow plate-shaped equilibrium precipitates (β phase of Mg₂Si composition).

However, when the alloy contains a small addition of Cu, this sequence is more complicated, as was demonstrated in a previous work using conventional and high-resolution transmission electron microscopy (CTEM and HRTEM) [4]. In an alloy containing 0.25 wt% Cu, it was shown that two different types of metastable β' precipitates, designated β'_{1} and β'_{1} , may coexist during ageing at approximately 300°C. The β'_{1} precipitate possesses a hexagonal structure (a = 0.705 nm, c = 0.405 nm) and forms typically in the pseudo-binary Al-Mg-Si alloys, as was first shown by Jacobs [3] and later confirmed by other authors [5, 6]. The β'_{1} precipitate also possesses a hexagonal structure (a = 1.04 nm, c = 0.405 nm) identical to the λ' or Q' phase observed in the quaternary Al-Mg-Si-Cu alloys [7-9].

d'après [V. MASSARDIER, T. EPICIER and P. MERLE, Acta mater. 48, (2000), 2911-2924]

- Compléments de BIBLIOGRAPHIE : [U. DAHMEN, Ultramicrosc. 30, 1-2, (1989), 102-115]

[C. CAYRON, Acta Cryst. A62, (2006), 21-40]

[E. CONFORTO, D. CAILLARD, Acta Materialia 55, (2007), 785–798] A62 A62 56/125

. STRUCTURES ORDONNÉES

Ordre-Désordre dans les Matériaux, École CNRS Aussois, Éd. de Physique, (1984)]

Ordre à courte distance : carbure de vanadium sous-stoéchiométrique VC_{≈0.75} (structure CFC type Na-Cl)

azimut [110]

surface d'iso-intensité diffuse d'après [M. SAUVAGE, E. PARTHÉ, Acta Cryst., A28, (1972), 607-616]

Ordre à longue distance : carbure de vanadium V₆C₅ (structure CFC type Na-

azimut [110]

[T. EPICIER, p. 297-327 dans "The Physics and Chemistry of Carbides; Nitrides and Borides", NATO ASI Series, 185, (1990)]

micro- ou nano-diffraction

 Remarque : nano-diffraction en METHR

TF(image de plans) = 'taches' de diff.

particule λ '-Al_xCu₂Mg_{12-x}Si₇ (alliage d'aluminium 6016)

Microscopies Electroniques et Transitions de Phases - T. Epicier

diffraction en FAISCEAU CONVERGENT (CBED : Convergent Beam Electron Diffraction)

-Mateis

(LACBED : Large Angle CBED) [J.P. MORNIROLI, Diffraction Électronique en Faisceau Convergent à Grand Angle (LACBED), Ed. Soc. Fr. des Microscopies (Paris), 1998]

CRISTALLOGRAPHIE (symétries), MESURES de paramètres, CONTRAINTES, DÉFAUTS cristallins

• Illustration 1 : Taux de carbone dans l'austénite résiduelle*

mesures angulaires (lignes de Kikuchi) **→** mesures de paramètres **→** mesure de composition chimique

Acier témoin 0.01 wt. % C, austénitisation 1000°C + trempe [X-M. ZHANG, P.M. KELLY, Mater. Charact. 40, 3, (1998), 145-196]

*[A. KAMMOUNI et al., *Mater. Charact.* (2007), doi:10.1016/j.matchar.2007.11.003]

59/125

Illustration 2 : Contraintes et Déformations locales

contraintes (résiduelles,...) → déformations locales → variations angulaires (LACBED)

Interface α secondaire (h.c.) / β (c.c.) dans Ta6V

simulation

Cu-L

Mg-K

mmm

11 coups (a.u.) ທານແມ່ນ

21

II. Microscopie Électronique en Transmission...II.1. Imageries...II.1.4. Cartographies chimiques

Même principe qu'en MEB

résolution spatiale ≈ nm (échantillon mince, MET 'FEG')

61/125

II.1.4.b) Imagerie Filtrée en Énergie : EFTEM (Energy-Filtered TEM) • Principe des "images-spectres"

prisme 'in-column'

reconstruction de spectres EELS locaux

TI-L

OTHE

Illustration 1 : Be-K SÉPARATION DE PHASES dans un VERRE MÉTALLIQUE MASSIF* VITRALLOY[®] system Zr_{41.2} Ti_{13.8} Cu_{12.5} Ni₁₀ Be_{22.5} [B. VAN De MOORTELE B., thèse (2003)] 'ZERO-loss' image 50 nm Counts (a.u.) Zr-M Cu-L3 at 931 eV Ni-L fenêtre 12 eV Ni-L3 at 855 eV Zr-M3 at 335 eV x 50 |1/___ | Be 100 200 300 400 500 6**0**0 700 8**0**0 9**0**0 Energy Loss (eV)

*LEO 912 (Consortium Lyonnais de Microscope Électronique) JEOL 3010 + GIF (CEA-Grenoble – Pascale Bayle-Guillemaud)

- Microscopies Electroniques et Transitions de Phases - T. Epicier

Be-K map

Illustration 1 : SÉPARATION DE PHASES dans un VERRE MÉTALLIQUE MASSIF

VITRALLOY® system $Zr_{41.2} Ti_{13.8} Cu_{12.5} Ni_{10} Be_{22.5}$ [B. VAN De MOORTELE B., thèse (2003)]

'ZERO-loss' image

évidence d'une décomposition spinodale par **S.A.N.S.**

Zr-M map

Illustration 2 : EFTEM et (nano-)PRÉCIPITATION

⇒ Visualisation de précipités (aciers)

[P. WARBICHLER et al., *Micron* 29, 1, (1998), 63]

METC ou image élastique

image filtrée d'un précipité (seuil d'ionisation)

acier austénitique modèle (déformé à 950°C) [M. RAINFORTH et al., Acta Mater. 50, (2002), 735]

Mesure d'une fraction volumique précipitée [E. COURTOIS et al., Micron, 37, 5, (2006), 492-502]

Acier modèle Fe - Nb 790 ppm - C 120 ppm - N 10 ppm

Fraction Volumique 'EFTEM' = 0.09 % Dissolution électrolytique : 0.08₂ (ARCELOR-Research / IRSID) S.A.N.S. : 0.08 [F. PERRARD, thèse Grenoble (2004)]

*JEOL 3010 + GIF (P. BAYLE-GUILLEMAUD, CEA-Grenoble)

• Illustration 3 : CHIMIE et PICS de PLASMONS

◆ IMAGERIE FILTRÉE en STEM (Scanning Transmission Electron Microscopy) : méthode spectre-image

II. Microscopie Électronique en Transmission...II.1. Imageries...II.1.5. Imagerie STEM-HAADF

II.1.5.a) Principe de l'imagerie High Angle Annular Dark Field : Champ Sombre Annulaire à Grand Angle

• origine 'CHIMIQUE' de l'intensité HAADF

 $f_{atom}(\mathbf{q}) = \frac{1}{2\pi^2 a_0 q^2} \mathbf{Z} \qquad (diffusion de Rutherford non relativiste)$ $(\mathbf{q} = \frac{2\sin(\theta)}{\lambda}, a_0 = \varepsilon_0 h^2 / \pi m_0 e^2 - rayon de Bohr -, \mathbf{Z} : numéro atomique)$ $f_{atom}^2(\mathbf{q}) \propto \mathbf{Z}^2 \quad \text{et} \quad \mathbf{I}_{\text{HAADF}}(\mathbf{q}) \propto \mathbf{Z}^2 \quad (\text{section efficace})$ $\stackrel{\text{dog}}{\text{a rapprocher du modèle 'à force centrale'}}_{\text{d'attraction des électrons incidents par le}} \quad \frac{d\sigma_e^{noyau}}{d\Omega} = \frac{4\gamma^2 \mathbf{Z}^2}{a_0^2 \mathbf{q}^4} \qquad \gamma = 1/\sqrt{1 - (v/c)^2}$

d'attraction des électrons incidents par le d\2 noyau seul sans écrantage (diffusion à grand angle)

[S.J. PENNYCOOK, *Ultramicrosc.* 30, (1989), 58], [E.M. JAMES et al., *JEOL News* 33E, 1, (1998), 9], [T. WALTHER, C.J. HUMPHREYS, *J. Cryst. Growth* 197, (1999), 113-128], [K. ISHIZUKA, *Ultramicrosc.* 90, (2002), 71] 68/125

II.1.5.b) Applications de l'HAADF (transformations de phase)

Intérêt de l'imagerie HAADF : cas d'études de précipitation

En une position du balayage de la sonde : $I_{ipixel} = I_0 (\Sigma Z_i^{\alpha} \rho_i) \mathcal{V}$ ($\alpha \approx 1.7-2$)

 ρ_i : densité atomique partielle de l'espèce i (en nombre d'atomes par unité de volume) ${\cal V}$: volume de matière sondée

$ightarrow I_{HAADF} \propto Z^{lpha}$:

les phases 'lourdes' sont 'brillantes'

Imagerie incohérente : Suppression du contraste de diffraction

Précipités dans un alliage de Cu

Précipités θ dans Al - 4% Cu

• Application quantitative : précipités Al₃(Zr,Sc) dans Al

Structure CŒUR-COQUILLE (CORE-SHELL) des précipités :

- identifiée par METHR / EDX [A. TOLLEY, V. RADMILOVIC, U. DAHMEN, Scripta Mater. 52, (2005), 621]
- confirmée par une analyse convergente multi-techniques : Monte-Carlo cinétique, Sonde Atomique, S.A.X.S., METHR / EDX

[E. CLOUET et al., Nature Materials 5, (2006), 482]

◆ Application quantitative : précipités Al₃(Zr,Sc) dans Al

S

Application quantitative : précipités Al₃(Zr,Sc) dans Al*

[T. EPICIER, Adv. Eng. Mater. 8, (2006), 12]

II.1.5.c) Comparaison HAADF en (S)TEM – mode TRANSMISSION en MEB

Précipités VC sur une réplique d'extraction (alliage FeVNbC traité 2' à 870°C) [D. ACEVEDO et al., J. of Microsc., à paraître]

sonde 0.1 nm

II.1.5.d) Contraste de 'Z atomique' en HAADF sonde 0.3 nm

Principe

Résolution ATOMIQUE SI la TAILLE de la SONDE est **INFÉRIEURE** aux distances inter-atomiques

Si [110]

potentiel atomique

I^{er} exemple : Dépôt de SrTiO₃ sur GaAs [110] [R.F. KLIE et al., Appl. Phys. Lett. 87, (2005), 143106]

schematic drawing of interface:

Autres illustrations

quasi-cristal décagonal Al₆₆Cu₁₇Co₁₇

[E. ABE, Jeol News, 42, 1, (2007), 12-15]

Particules Co₃Pt ordonnées L1₂

Zones 'G.P.' dans Al-3 at.% Ag [110]

[R. ERNI et al., Mat. Chem. & Phys. 81, (2003), 227]

[E.M.JAMES, N. BROWNING, *Ultramicrosc.* 78, (1999), 125-139]

76/125

II.2. ANALYSES spectroscopiques

II. Microscopie Électronique en Transmission.......II.2. Analyses spectroscopiques...II.2.1. EDX

II.2.1.a) Nano-sonde – 'line-scan'

Application : chimie locale

<u>Résolution spatiale</u> ≈ nm

objet très mince hors 'artefacts' : (fluorescence dans la colonne *(hard X-Rays)* et dans la lame, électrons rétro-diffusés, position de la région d'analyse par rapport au détecteur,...)

élargissement du faisceau b(t) :

(**b**, **t** en cms) :

$b(t) = 7.2_1 10^5 (Z/E_0) (\rho/A)^{1/2} t^{3/2}$

(Z numéro atomique, A masse atomique moyenne, ρ densité, E_0 énergie primaire en kV)

[J.L. GOLDSTEIN, p. 83-120 dans 'Introduction to Analytical Microscopy', Plenum Press : New York, (1979)]

Al, t = 50 nm : b(t) = 1.4 nm à 200 kV

Résolution analytique ≈ fraction de % atomique

selon les éléments analysés, le rapport signal/bruit (taille de la zone analysée, qualité-minceur de l'objet,...)

[DALE E. NEWBURY et al., p. 653-681 dans 'Handbook of Microscopy for Nanotechnology', Springer US, (2005)]

<u>'line-scan'</u> à travers des hétérogénéités nanométriques (particules, interfaces, précipités)

77/125

II.2.1.b) Illustrations

- Exemple de nano-analyse ponctuelle
 - AI Mg,Si (6016) (W. LEFEBVRE, F. De GUEUSER [thèse Rouen, (2005)])

CORRÉLATION avec des résultats de sonde atomique

• Exemple de 'line-scan' (ligne de profil) : précipités Al₃(Zr,Sc) dans Al*

chs

II. Microscopie Électronique en Transmission.......II.2. Analyses spectroscopiques...II.2.2. EELS

II.2.2.a) Généralités sur l'EELS (Electron Energy Loss Spectroscopy)

[R.F. EGERTON, 'Electron Energy-Loss Spectroscopy in the electron microscope', *Plenum Press* 2nd ed. New York (1996)]
 [O. STEFAN, p. 333-356 dans 'Ecole thématique: Microscopie des Défauts Cristallins', St Pierre d'Oléron, éd. SFμ, (2001)]
 [V. SERIN, p. 357-368 dans 'Ecole thématique: Microscopie des Défauts Cristallins', St Pierre d'Oléron, éd. SFμ, (2001)]
 [C. COLLIEX, O. STEFAN, p. 653-681 dans 'Handbook of Microscopy for Nanotechnology', Springer US, (2005)]

Principe de l'EELS

⇒ Intérêts de l'EELS

- bonne détection des éléments LÉGERS (B, C, N, O...)

 - 'physique' des PLASMONS / PERTES PROCHES et des SEUILS d'IONISATION exploitable avec une résolution énergétique < 1 eV
 80/125

81/125

Simulations de structures fines ELNES

transition d'un électron d'un niveau profond vers un état inoccupé au-dessus du niveau de Fermi :

$$\frac{d^2\sigma}{dEd\Omega}(E,q) = \frac{4m^2e^2}{\hbar^4q^4}M(E) \qquad M(E) = \sum_{f} \left| \langle \psi_f \left| e^{-iq.r} \right| \psi_i \rangle \right|^2 \delta(E_f - E_f - E_f)$$

 calcul de la structure électronique d'une 'supermaille' contenant l'atome ionisé à sonder

Wien[©] (97,2K) [P. BLAHA et al., User Guide : 'WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties', ed. Techn. Univ. Wien, Austria, (2001)]

APPLICATIONS

voir par exemple [C. HÉBERT, Micron 38, (2007), 12]

Illustration : seuil N_{κ}

[G. RADTKE et al., J. of Microsc. 210, (2003), 60]

[A.L. ANKUDINOV et al., Phys. Rev. B 58, (1998), 7565]

- calcul de la diffusion multiple de l'électron

II.2.2.b) Illustrations

• EELS et interfaces

 \Box Exemple 1 : interface Y_2O_3 / MgO [F. PAILLOUX et al., *Micron* 37 (2006), 420-425]

Microscopies Electroniques et Transitions de Phases - T. Epicier

-Mateis

SEELS à très haute résolution spatiale (illustrations non exhaustives...)

[M. VARELA et al., Phys. Rev. Letters 92, 9, (2004), 095502]*

*ORNL, microscope corrigé

the

• *Line-scan* en EELS : précipité hétérogène

Acier bas carbone calmé Al (re-nitruré) [M. SENNOUR, thèse Lyon (2002)]

'coeur' TIN confirmé en EFTEM [M. SENNOUR, C. ESNOUF, Acta Materialia 51, (2003), 943-957]

DOSAGE CHIMIQUE en EELS

analyse QUANTITATIVE de nano-précipités Nb_xC_yN_z

Acier modèle (Fe - Nb 843 ppm, C 59 ppm, N 64 ppm)

Collection des précipités sur répliques extractives en AlO_x [C.P. SCOTT et al., Scripta Mater 47, (2002), 845-849]

*voir également [J.A. WILSON, A.J. CRAVEN, Ultramicr., 94, (2003), 197-207]

Comparaison EELS - EDX

[M. WALLS, séminaire 'Recamia' Lyon (2007)]

Avantages de EDX	Avantages de EELS
- Marche en MEB -objets massifs (pas besoin de lame mince)	 fort signal pour éléments légers jusqu'à l'hydrogène
 interprétation et traitement relativement simples — pas de structures 	 résolution en énergie 0,3 à 1 eV → structures fines → informations électroniques
électroniques, pics gaussiens, fond continu petit	électroniques
 très grand signal pour les éléments lourds - faciles à détecter 	-collection efficace
désavantages	-très bonne résolution spatiale <1nm (EDX limité à ~1nm)
-détection d'éléments légers (Z<11) difficile (de moins en moins vrai)	désavantages
- résolution en énergie 100 à 200 eV, pas de structures fines, aucune information	 traitement difficile, interprétation aussi
information électronique	 signaux pour les éléments lourds relativement petits
-collection relativement inefficace (angle solide et fonctionnement du détecteur)	 nécessite lame mince (pas faisable en MEB)
détecteur)	 pertes multiples compliquent le spectre. Déconvolution souvent nécessaire

II.3. MET : aspects spécifiques

II. Microscopie Électronique en Transmission.....II.3. Aspects spécifiques....II.3.1. MET in situ

[E.P. BUTLER, K.F. HALE, 'Dynamic Experiments in the Electron Microscope', North-Holland Pub. (1981), 457 p.]

II.3.1.a) Expériences de chauffage

 Illustration 1 : Dépôts de films minces Al sur Si (connectiques micro-électronique)

mécanismes de relaxation de contraintes thermiques

[E. EIPER et al., Acta Mater. 55 (2007), 1941] (M. CABIÉ, CEMES Toulouse)

T = 410°C

films épais (> 400 nm) : mouvements de dislocations *films minces (< 400 nm) :* diffusion (joints de grains)

 Illustration 2 : re-cristallisation in situ d'un alliage AI-Mg-Sc

> Initiation of Continuous Static Recrystallization

> > speed = 2.5 x

[www.robertson.mse.uiuc.edu]

 Illustration 3 : croissance anormale (Ni)

[www.robertson.mse.uiuc.edu]

- Microscopies Electroniques et Transitions de Phases - T. Epicier

100 nm

100 nm

Chauffage in situ : contraintes et limitations

⇒ Effets d'épaisseur

Al : recristallisation stoppée en bord de lame

Fe-N : Précipitation inopérante à faible épaisseur

[E.P. BUTLER, K.F. HALE (1981)]

II.3.1.b) Expériences de déformation

Déformation globale

Germanium déformé à haute Température

91/125

92/125

Microscopies Electroniques et Transitions de Phases - T. Epicier

II.3.1.c) MET 'environnementale'

Mode environnemental en MET

[E.P. BUTLER, K.F. HALE, 'Dynamic Experiments in the Electron Microscope', North-Holland Pub. (1981), 457 p.] [R. SHARMA, P.A. CROZIER, p. 531-565 dans 'Handbook of Microscopy for Nanotechnology', Springer, (2005)] [P.L. GAI et al., MRS Bull. 32, (2007), 1-7, www/mrs.org/bulletin]

⇒ SOLUTION 'MICROSCOPE'

(www.cmm.mrl.uiuc.edu/, Urbana, USA)

CELLULE Environnementale (JEOL 300kV, CRMCN Marseille)

[S. GIORGIO et al., Ultramicrosc.106, (2006), 503-507]

Premiers développements...

Acier sous différentes pressions partielles MET 1MeV, 'gap' 5 mm

[(SWANN & TIGHE (1971), cité par E.P. BUTLER, K.F. HALE, (1981)]

Développements récents

<u>5 nm</u>

[S. HELVEG et al., *Nature* 427, (2004), 426-429] formation de nanotubes de carbone sur Ni/Al_2O_3 (2.1 mbar $CH_4:H_2$ (1:1) à 536°C)

Au (recuit à 350° C sous H₂, 4 mbar et refroidi)

Évidence du facettage

[S. GIORGIO et al., Ultramicrosc.106, (2006), 503-507]

II. Microscopie Électronique en Transmission...II.3. Aspects spécifiques...II.3.2. Tomographie en MET

II.3.2.a) Généralités

• Techniques de TOMOGRAPHIE en Sciences des Matériaux

multi-échelle (compromis)
'3D' structurale et chimique

Méthodologie applicable en MET

☐ Cas général : étude d'un objet ISOLÉ

Recommandations : Intervalle d'inclinaison $2\alpha \ge 120^{\circ}$

Nombre d'images N maximal (pas d'inclinaison minimal – 1-2° –)

$$\mathbf{R_z} = \frac{\alpha t}{N} \sqrt{\frac{\alpha + \sin\alpha \cos\alpha}{\alpha - \sin\alpha \cos\alpha}} \qquad (t = \text{épaisseur de l'objet le long de l'axe optique z})$$

 $(\mathbf{R_z} = 1.7 \text{ nm avec une épaisseur t de 50 nm, 130 images acquises sur 2\alpha = 130°})$

COMPLÉMENTS UTILES... [P.A. MIDGLEY, M. WEYLAND, Ultramicrosc. 96, (2003), 413-431] [P.A. MIDGLEY, p. 601-627 dans 'Handbook of Microscopy for Nanotechnology', Springer US, (2005)]

Logiciel de reconstruction : TOMOJ (plug-in pour ImageJ) [http://u759.curie.u-psud.fr/softwaresu759.html]

[C. MESSAOUDI et al., BMC Bioinformatics, (2007), 8:288]

II.3.2.b) Contraintes spécifiques à la tomographie MET en Sciences des Matériaux

• Limitation d'inclinaison *(tilt)* des porte-objets

☐ MICROSCOPES USUELS (200 kV non corrigés)

☐ MICROSCOPES 'ADAPTÉS'

Moyenne tension 300 kV: pièces polaires 'large-gap'

200 kV: pièces polaires 'large-gap' + correcteur de C_s -

Mode d'imagerie pour la TOMOGRAPHIE en MET en Sciences des Matériaux

Illustration : précipitation de η-MgZn₂ dans Al (alliage 7xxx)

ch's

METC

STEM HAADF

Inclinaison de l'objet en METC sans diaphragme de contraste

tilt θ_0

tilt $\theta_0 + 2^\circ$

RELATION linéaire Intensité = f(masse-épaisseur) **requise**

99/125

II.3.2.c) Illustration : précipitation de η -MgZn₂ dans AI (alliage 7xxx)

[S. BENLEKBIR, thèse INSA]

série expérimentale et obtention du tomogramme (reconstruction)

TOMOGRAMME ART algorithme ART, 14 itérations (TOMOJ – ImageJ) [C. MESSAOUDI et al. (2007)]

• Dépouillement et résultats : comparaison à une étude antérieure

II.3.2.d) Quelques illustrations (littérature)

'bactéries magnétotactiques'

[P. R. BUSECK et al., *Proc. Nat. Acad. Sci.* 99, 24, (2001), 13490-13495]

Déformation elliptique des précipités Ag due au passage des dislocations dans un alliage Al-Ag

[K. INOKE et al., Acta Materialia 54, (2006), 2957-2963]

Précipitation de Ge dans Al

103/125

II. Microscopie Électronique en Transmission...II.3. Aspects spécifiques...II.3.3. Microscopie corrigée

II.3.3.a) Corrections en C_s

principe de la correction de l'aberration de sphéricité (C_s)

correction de la taille de sonde

Combinaison de 4 quadrupoles / octupoles OU 2 hexapoles

[A.W. CREWE, *Optik* 55, (1982), 271, H. ROSE, *Optik* 85, (1990), 19] [M. HAIDER et al, *Ultramicrosc.* 75, 1, (1998), 53] [O.L. KRIVANEK et al., *Ultramicrosc* 78, (1999), 1-11]

[M. HADER et al., Ultramicr. 81 (2000), 163-175]

correction de l'image en METHR

ch's

104/125

Microscopies Electroniques et Transitions de Phases - T. Epicier -

- illustration : AI-Li-Cu 2198 (T8, pré-déformé 2%)

ch's

[J. DOUIN, P. DONNADIEU, F. HOUDELLIER]

Microscopies Electroniques et Transitions de Phases - T. Epicier

II.3.3.b) Double-corrections C_s / C_c

• limitation de l'effet d'aberration chromatique par adjonction d'un *monochromateur*

[B. FREITAG et al., *Ultramicrosc.*, 102, (2005), 209-214, T. WALTHER et al., *Ultramicrosc.* 106, (2006), 963-969]

'vrai' correcteur d'aberration chromatique

[M. HAIDER et al., Ultramicrosc. 108, (2008), 167-178]

II.3.3.c) Résolution en énergie (monochromateur)

II.3.3.d) MET "dynamique"

[M.R. ARMSTRONG et al., Ultramicrosc. 107, (2007), 356-367]

Mateis

III. ANNEXE : Compléments sur les défauts dans les structures ordonnées

carbure V₆C₅: fautes d'ordre non-conservatives

CFC type Na-Cl,

écart à la composition V_6C_5 : antiphases non conservatives

Modèle 1

P P 00,000,000 .000 00,000,000,000 0 1000 1000 1000 ,000,00,0000 Ο 100 Ο 100,0000 0 00 00\0'0,00000 0 000000000000000 000000000000000 00000000000000

configurations enantiomorphes Left / Right P1 0, 000000, 00000000, 00000 ,00 0 00,000,000,00000000,000,000,000 0000,00,00,000000000,000,00000 0 0

Modèle 2

*[T. EPICIER, p. 297-327 dans 'The Physics and Chemistry of Carbides, Nitrides and Borides', Kluwer: London, (1990)] 109/125

[T. EPICIER, Mater. Res. Soc. Symp. Proc. 183, (1990), 255-266]

[D. PASHLEY, A.E.B. PRESLAND, *J. Inst. Met.* 87, (1959), 419]

• compléments de littérature : [D. WATANABE, O. TERASAKI, p. 231-239 dans Mat. Res. Symp. Proc. 21, Elsevier : New-York, (1984)]

> [S. AMELINCKX, G. VAN TENDELOO, J. VAN LANDUYT, *Ultramicrosc.* 18, (1985), 395-414] 110/125

Super-Dislocations dans les structures ordonnées

ANNEXE : contraste des interfaces planes en MET Conventionnelle

[R. GEVERS, Méthodes et Techniques Nouvelles d'Observation en Métallurgie Physique, chap. 11, École de Perros-Guirec, Éd. Soc. Fr. de M. E, (1972), p.155]

 $\Delta \mathbf{g}, \Delta \mathbf{s}, \mathbf{R}$

système de franges règles de symétrie CC (CS)

• FAUTES d'EMPILEMENT PAROIS D'ANTIPHASE $\Delta g = 0, \ \alpha = 2\pi g.R$

franges α (faute d'empilement VC)

 FRONTIÈRES de DOMAINES (ordonnés, ferro-électriques,...)
Δg // n, α = 0

franges δ (domaines ordonnés Mo₂C)

 ◆ INTERFACES GÉNÉRALES (joints de grains, précipités...)
∆g quelconque

Moirés (précipités dans la ferrite) 112/125

Faute d'empilement dans Al-Ga 15 % [R. GEVERS, (1974)]

Règle d'extinction : $g.R_F = 0$ ('2-ondes')

	Champ Clair		Champ Sombre				
	frange sup.	fr. inf.	frange sup.	fr. inf.			
sinα > 0	Sombre	S ombre	C laire	Sombre			
$\sin \alpha < 0$	Claire	Claire	S ombre	Claire			
Champ Sombre							
				113			

C.C.

		Ulall	onamp combre		
	frange sup.	fr. inf.	frange sup.	fr. inf.	
sinδ > 0	Claire	Sombre	Claire	Claire	
sinδ < 0	Sombre	Claire	S ombre	Sombre	

Parois de domaines dans Mo_2C (ordonné ς)

C.S.

114/125

0.5 µm

ANNEXE : (brève) introduction à la bi-cristallographie (joints de grains)

ANNEXE : Compléments sur la MET Haute Résolution

Rappels sur la formation de l'image en METHR*

Approximation de l'**OBJET de PHASE FAIBLE** (Weak Phase Object) **pour un cristal mince (t) :**

 $\psi_{\text{sortie}}(\mathbf{r}) = \psi_0(\mathbf{r}) \exp[i\sigma V_p(\mathbf{r})t]$

soit (développement au 1^{er} ordre) :

 $\psi_{\text{sortie}}(\mathbf{r}) = (1 + i\sigma V_p(\mathbf{r})t)\psi_0(\mathbf{r})$

 $V_p(\mathbf{r}) = \mathbf{potentiel \ projet\acute{e}}$ (facteurs de structure $F_g =$ coefficients du développement en série de Fourier) :

 $V_{p}(\textbf{r}) \propto \Sigma \textbf{F}_{\textbf{g}} \text{exp}[2i\pi\textbf{g}.\textbf{r}]$

L'action de la lentille-objectif décrite par une fonction de modulation T(v) conduit à :

 $I_{image}(\mathbf{r}) = 1 - 2\sigma V_p(\mathbf{r})t$

(atomes NOIRS)

- à la défocalisation de Scherzer : $\delta f_s = -1.2 (C_s \lambda)^{1/2}$
- pour une résolution "point-à-point" : $R_s = 0.6 C_s^{1/4} \lambda^{3/4}$

*[J.C.H. SPENCE, 'Experimental High-Resolution Electron', Oxford Univ. Press 2nd éd., (1988), 427 p.]

[T. EPICIER, J. THIBAULT, p. 229-278 dans 'École thématique: Microscopie des Défauts Cristallins', St Pierre d'Oléron, éd. Soc. Fr. des Microscopies, (2001)]

-Mateis

• Fonction de transfert de contraste (de modulation) du microscope

• Simulations en METHR (problématique des interfaces)

- Principe du calcul dynamique "multi-couches" (multislice) [T. EPICIER, J. THIBAULT (2001)]

Simulations QUANTITATIVES en METHR

- **2** simulations d'images **METHR**
- **3** Facteur d'Accord entre Images
- 4 meilleur *'match'*

Mullite [001] (Jeol ARM 800 kV)

1x1 maille

[A. OURMAZD et al.,

Ultramicrosc. 34, (1990), 237]

Facteurs d'Accord entre Images FAI_m :

$$\mathbf{FAI}_{\mathbf{1}}(t, \, \delta f, \, \mathbf{h}_{\text{tilt}}, \, \mathbf{k}_{\text{tilt}}) = \frac{\sum_{i, j} | P_{\text{exp}}(i, j) - \rho P_{\text{calc}}(i, j) |}{\sum_{i, j} (P_{\text{exp}}(i, j))}$$
$$\mathbf{FAI}_{\mathbf{2}}(t, \, \delta f, \, \mathbf{h}_{\text{tilt}}, \, \mathbf{k}_{\text{tilt}}) = \frac{\sum_{i, j} | P_{\text{exp}}(i, j) - \rho P_{\text{calc}}(i, j) |^2}{\sum_{i, j} (P_{\text{exp}}(i, j))^2}$$

FAI₃(t, δf , h_{tilt} , k_{tilt}) = sin($\theta_{exp,calc}$)

dimension IxJ

P_{exp/calc}(i,j)

120/125

n

Mateis

• METHR à faible C_s... non corrigé

microscope aligné (pas d'astigmatisme / coma) : $CTF(v) = sin[\pi\lambda(C_s\lambda^2v^4/2 + \delta fv^2)]$

défaut d'astigmatisme de 2nd ordre : $CTF(v) = sin[\pi\lambda(C_s\lambda^2v^4/2 + [\delta f + \frac{\delta f_A}{2}sin(2\theta)]v^2)]$

Facile à corriger (stigmateurs standards) MAIS il existe un astigmatisme *de 3*^{ème} ordre DIFFICILEMENT détectable (+ d'autres aberrations...) $CTF(v) = sin[\pi\lambda(C_s\lambda^2v^4/2 + \delta fv^2) + |A_3|v^3cos(3(\theta - \theta_{33}))]$ [O.L. KRIVANEK et P. STADELMANN, *Ultramicrosc.* 60, (1995), 103-113]

Joint Σ 5 (310) dans Au, simulations 400 kV [K. MERKLE et al., J. of Microscopy 190, (1997), 204]

 $A_3 = 0 mm$

 $\theta_{33} = 0^{\circ} (A_3 = 1 \text{ mm})$

artefacts de DÉPLACEMENTS RIGIDES aux interfaces !

-Mateis

correction de l'aberration de sphéricité (C_s) en METHR

correcteur de C_s : C_s = 50 μ m

l'atténuation due à la cohérence spatiale partielle dépend du defocus :

123/125

124/125

