

Rapid Tomography in Environmental TEM: How Fast Can We Go to Follow the 3D Evolution of Nanomaterials in situ?

Lucian ROIBAN¹, Sid KONETI¹, Khan TRAN², Yue-Meng FENG², Thomas GRENIER², Voichita MAXIM², <u>Thierry EPICIER¹</u>

University of Lyon, INSA-Lyon, Bât. Blaise Pascal, 69621 Villeurbanne, France

¹ Mateis, CNRS UMR 5510

²Creatis, CNRS UMR 5220, Inserm U1044

• Experimental Background on ETEM

• Fast 3D acquisitions

(Towards very fast tomography at the second level)

Perspectives (and conclusions):
3D Operando ETEM

Experimental background on ETEM

• Environmental microscope (differential pumping system)

P. GAI et al., *MRS Bulletin* **33** (2008) 107 T.W. HANSEN et al., *Mat. Sci. & Technol.* **26** 11 (2010) 1338 Dedicated Environmental TEM (≈ 10⁻⁶ mbar / a few mbar) Aberration-corrected 80-300 kV FEI Titan ETEM

www.clym.fr

CISCEM 2016 ³⁴International Conference on In-Situ and Correlative Electron Microscopy October 11-22, sarbridgen/Greenmanv

• Environmental microscope (differential pumping system)

Dedicated Environmental TEM (≈ 10⁻⁵ mbar / a few mbar) Aberration-corrected 80-300 kV FEI Titan ETEM

300 kV, T° = 495°C, 1.2 10⁻² mbar O₂ 10 nm

Speed x5, total time 4 min 13 sec

Combustion of soot on ZrO₂

A. SERVE et al., *Applied Catal. A* **504** (2015) 74-80

Experimental background on ETEM

• Heating sample holders

Furnace based GATAN[™] (900°C) Shadowing over ±36°

 α tilt ± 72°

(Towards very fast tomography at the second level)

• Need for 3D analyses under environmental conditions

Oneview 4K camera

Combustion of soot on ZrO₂ ETEM 80 kV, 500°C, 3 mbar O₂

Total time **3 min 05 sec** (speed x10) A. SERVE et al., *Applied Catal. A* **504** (2015) 74-80

Melting of Si@Ge core-shell nanowires ETEM 300 kV, 1100°C, HV

Total time **2 min 10 sec** (speed x10) METSA experiment, 2016 *(M.I. RICHARD, IM2NP)* Phase separation in Ag@In₂O₃ core-shell NPs ETEM 300 kV, 450°C, 1.3 mbar H₂

Total time 4 min 45 sec (speed x20)

J. RAMADE et al., to be published

• Initial acquisition strategy: optimized 'step-by-step' tilt series

Total acquisition time: t_{total}	≈ 4 min	≈ 1 min
Acquisition time (exposure): t_{exp}	0.2 sec	0.1 sec
Pause after each rotation: t_{pause}	0.5 sec	0.3 sec
Time for an elementary rotation: $t_{\delta\alpha}$	1 sec	0.5 sec
Elementary rotation step: $\delta \alpha$	1°	2°
Rotation angular amplitude: 2α	140°	140°

• Refined acquisition strategy: continuous rotation tilt

Rotation angular amplitude: 2α	140°	140°
Angular rotation speed ω	1°/sec	4°/sec
otal acquisition time: t_{total}	2 min 20 sec	35 sec

(Towards very fast tomography at the second level)

• Evaluation of rotation-induced blur effects: 2D Ghost for reconstruction

BF TEM image of Ag NPs in mesoporous silicalites

perfect eucentric

Image at zero tilt

Rotation angular amplitude: 2α	140°	140°	140°	140°
Total acquisition time: t_{total}	30 sec	7 sec	5 sec	3 sec
Angular rotation speed $\omega = 2\alpha/t$	4.7°/sec	20°/sec	28°/sec	46.7°/sec
Number of frames per second: Fps	5	10	10	10
Angular blur / frame: Blfr = $\frac{2\alpha}{t.Fps}$	<i>0.93</i> °	2 °	2.8 °	4.7 °

(Towards very fast tomography at the second level)

• Evaluation of rotation-induced blur effects: 2D Ghost for reconstruction

BF TEM image of Ag NPs in mesoporous silicalites

(Towards very fast tomography at the second level)

Evaluation of rotation-induced blur effects: 2D Ghost for reconstruction

BF TEM image of **Ag NPs in mesoporous silicalites**

'PERFECT RECONSTRUCTION' +90 / -90°, step 0.1° ≈ 150 nm

Weighted Back Projection

Rotation angular amplitude: 2α Total acquisition time: t_{total} 5 sec Angular rotation speed $\omega = 2\alpha/t$ **28°/sec** Number of frames per second: **Fps** (100 Angular blur / frame: **BIfr** = $\frac{2\alpha}{t.Fps}$ 0.28°

Oneview GATAN 2K, 100 images/sec

140°

Image at zero tilt, Blfr 0.3°

(Towards very fast tomography at the second level)

MFI orthorhombic structure <u>www.iza-structure.org</u>

(Towards very fast tomography at the second level)

• In situ calcination of silicalites-encapsulated metallic NPs (Ag)

High Vacuum 20°C

Aligned tilt series 78° to -38° in 3 min 40 sec 328 frames from a 1584 frames video sequence

screen video capture

💐 speed x20

speed x50

Raw series 78° to -38° in 3 min 40 sec 1584 frames

Post-mortem automatic detection and suppression of 'blurred' images from 528 frames

(Towards very fast tomography at the second level)

• In situ calcination of *silicalites*-encapsulated metallic NPs (Ag)

3D model

• In situ ETEM calcination (and 3D quantification) under O₂ up to 450°C: results presented at IMC2014 T. EPICIER et al., *Proceed. IMC2014*, ISBN 978-80-260-6721-4

• Fast tomography of electron beam sensitive materials

Ex. 1: POLYMER NANOCOMPOSITES Dispersion of Mg₃AICO₃ Layer-Double Hydroxide nanoplatelets in latex

• Fast tomography of electron beam sensitive materials

Ex. 1: POLYMER NANOCOMPOSITES **Dispersion of Mg₃AICO₃ Layer-Double Hydroxide nanoplatelets in latex**

step-by-step series, +70 to -70°, 200 sec. (pause 0.5 sec, total electron dose $\approx 2.4 \ 10^4 \ e^{-/\AA^2}$ 'validated' by an irradiation test)

3D model (Mg₃AICO₃ LDH nanoplatelets)

- Fast tomography of electron beam sensitive materials
 - Ex. 2: BIOLOGICAL MATERIAL: Magnetotactic bacteria

R. BLAKEMORE, Science 190 (1975) 377-379

step-by-step series, -50 to 50°, 90 sec. (pause 0.5 sec)

• COMBUSTION of SOOT on ZrO₂

ETEM 80 kV, 500°C, 3 mbar O₂

Total time 3 min 05 sec (speed x10)

A. SERVE et al., Applied Catal. A 504 (2015) 74-80

from Oct. 2010: Diesel Particulate Filter compulsory on Diesel cars

C + 2 $O^{2\text{-}}_{\,\,\text{YSZ}} \rightarrow CO_2$ + 4 e- (though the soot)

50% of soot conversion at:

- 680°C without catalyst
- 520°C on YSZ

Perspectives (and conclusions): 3D Operando ETEM

SCEN 2016

Perspectives (and conclusions): 3D Operando ETEM

100 nm

Images 4K, 0.04 sec

'step-by-step' series, +70° to -71° in 130 sec, one tilt series every 5 min under 1.7 mbar O_2 at 400°C, 450°C, 475°C, 500°C, 525°C, 550°C, 600°C (Total 35 tilt series $\approx 2 h 45 min$)

Soot in contact Soot without contact 110 90 % 70 Volume 50 30 10 T, °C 400 425 450 475 500 525 550 575 600

• **REMINDER:** 3D acquisition at the SECOND LEVEL

tilt series +73°/-70° *in* **5.1** sec, **5** 10⁻⁵ mbar O₂, 300°C

• REMINDER: 3D acquisition at the SECOND LEVEL

100 nm

tilt series +73°/-70° *in* **5.1** sec, **5** 10⁻⁵ mbar O₂, 300°C

- Further improvements (running ANR project)
 - 1) Live 'alignment'

Local descriptors

- SIFT (Scale Invariant Feature Transform)
- SURF (Speeded Up Robust Features)
- ORB (Oriented FAST and Rotated BRIEF)

Soot on ZrO₂ 1.7 mbar O₂, **400°C Post-mortem alignment, 0.25 sec/image**

Perspectives (and conclusions): 3D Operando ETEM

• Further improvements (running ANR project)

B = S 🛞 *F* + n

Convolution

2) 'Deblurring'

sharp image S

Pd nanocatalysts supported on αAl_2O_3

Example 2:

Example 1: drift **F**

Blurred image B

Wiener

Constrained Least Squares

Estimated images S_E

Fast Iterative Shrinkage / Thresholding Algorithm

ACKNOWLEDGEMENTS

Francisco Cadete SANTOS AIRES, IRCELYON Mimoun AOUINE, IRCELYON Matthieu BUGNET, MATEIS

- Florent DALMAS, Cyril LANGLOIS (MATEIS, F), Anne-Sophie GAY (IFPen, F)
- CLYM (Microscopy Facility, Lyon St-Etienne), METSA (national TEM and Atom Probe network) (LYM 🐝 MCTSO
- ANR project '3DCLEAN' n°15-CE09-0009-01, LabeX 'IMUST' University of Lyon

