EELS STUDY of Gd₂O₃ NANO-PARTICLES EVIDENCE of 4f ELECTRONS DELOCALIZATION in NANO-SIZED GADOLINIUM OXIDE

OUTLINE

I. Problematic: ELNES of Nano-Particles (e.g. Gd_2O_3)

II. FEFF calculations of the O-K edge in Gd₂O₃ clusters

III. Conclusion: interest of Gd₂O₃ nano-hybrid based-systems for medical applications

Problematic: ELNES of Nano-Particles

□ NPs properties CHANGE when DECREASING SIZE

owing to the 'surface' atoms ratio

□ is ELNES sensitive to the various environments of a probed chemical specie distributed on 'volume' and 'surface' sites?

Problematic: ELNES of Nano-Particles

□ NPs properties CHANGE when DECREASING SIZE

owing to the 'surface' atoms ratio

□ is ELNES sensitive to the various environments of a probed chemical specie distributed on 'volume' and 'surface' sites?

□ Application to Gd₂O₃ clusters

 Gd_2O_3 NPs in an ethylen glycol ($C_2H_6O_2$) solution

JEOL 2010F, no corrector

incident beam focused at ≈ 10 nm (TEM mode)

probe convergence $\frac{1}{2}$ angle $\alpha = 10$ mRad EELS collection $\frac{1}{2}$ angle $\beta = 7$ mRad acquisition time 15-20 sec., 0.3-0.5 eV/ch.

M. Ou, J.C. Le Bossé, V. Mauchamp, B. Mutelet, S. Roux, O. Tillement, P. Perriat, T. Epicier

e⁻beam

2009

METSA

□ Synthesis of Gd₂O₃ clusters with DIFFERENT *controled* SIZES

[M. OU et al., *J. Phys. Chem. C*, **113**, 10 (2009), 4038]

□ Synthesis of Gd₂O₃ clusters with DIFFERENT *controled* SIZES

[M. OU et al., J. Phys. Chem. C, **113**, 10 (2009), 4038]

number (%)

30 25

20 15

10

5

- Gd₂O₃ clusters assumed to be stoichiometric, spherical and crystallized
- All surface atoms described in the same way
- No surface relaxation / bond 'reconstruction'
- Magnetism effects (Gd) ignored (no spin-orbit coupling)
- *[A.L. ANKUDINOV et al., *Phys. Rev. B*, 58, 7565 (1998)]

-) diameter (nm)

FEFF calculation of Gd₂O₃ clusters

atomic shell sequence:

 $\mathbf{B_0} \mathbf{A_1} \mathbf{B_2} \dots \mathbf{A_{2k-1}} \mathbf{B_{2k}} \quad (\text{distances } \mathbf{r_0} = \textit{0}, \mathbf{r_1}, \dots \mathbf{r_n})$

□ Bulk: identical atomic potentials for all A_i and B_i

$\partial^2 \sigma_{total}$	_	∂²σ <mark>Β₀</mark>
$\partial E \partial \Omega$	—	$\partial E \partial \Omega$

□ Cluster: potentials will depend on site position r_i (especially surface A_S and B_S atoms)

2 steps:

1/2 calculation of each 'site' X-section

2/2 calculation of the weighted total X-section

 $\underbrace{\frac{\partial^2 \sigma_{\text{total}}}{\partial E \partial \Omega}}_{\text{2/2}} = \frac{1}{N_{\text{B}}} \left[\sum_{i} N_{i} \frac{\partial^2 \sigma_{\text{B}_{i}}}{\partial E \partial \Omega} + N_{\text{S}} \frac{\partial^2 \sigma_{\text{B}_{S}}}{\partial E \partial \Omega} \right]$

 N_i : number of B_i atoms at distance r_i from centre N_s : number of *(identical)* surface B_s atoms N_B : total number of B atoms

1/2 calculation of an 'elementary site' cross-section

General case of a **B**_i atom at distance **r**_i from centre

Illustration: central atom B_0 in a cluster of 1.35 nm

2/2 calculation of the total cluster cross-section

2/2 calculation of the total cluster cross-section

Mateis **INSA**

METSA

Size effect for clusters of 1, 1.35 and 1.5 nm

Comparison EELS experiments - simulations

Comparison EELS experiments - simulations

METSA

interest of nano-hybrid Gd₂O₃ (Au) based-systems for medical applications

[collaboration J.L. COLL et al., INSERM, UJF, F-Grenoble] [collaboration C. BILLOTEY et al., CNRS-INSERM, UCBL, F-Lyon]

P. PERRIAT, MATEIS, INSA-Lyon C. BILLOTEY, M. JANIER, CREATIS (INSA-UCB- HCL) O. TILLEMENT, S. ROUX, LPCML (UCB) C. LOUIS, NANO-H SAS

[J.L. BRIDOT et al., J. Am. Chem. Soc., 129 16, (2007), 5076]

interest of nano-hybrid Gd₂O₃ (Au) based-systems for medical applications

Tomography on Au@SiO₂ nano-composites

interest of nano-hybrid Gd₂O₃ (Au) based-systems for medical applications

